Google scholar

PhD Thesis

N. Kavokine. Many-body effects in nanoscale fluid transport. (PDF)


[12] N. Kavokine, P. Robin and L. Bocquet. Interaction confinement and electronic screening in two-dimensional nanofluidic channels. J. Chem. Phys. 157, 114703 (2022). ArXiV 2206.02591

[11] A. Marcotte, M. Lizee, B. Coquinot, N. Kavokine, K. Sobnath, C. Barraud, A. Bhardwaj, B. Radha, A. Niguès, L. Bocquet and A. Siria. Strong electronic winds blowing under liquid flows on carbon surfaces. ArXiV 2205.05037

[10] B. Coquinot, L. Bocquet and N. Kavokine. Quantum feedback at the solid-liquid interface: flow induced current and negative friction. ArXiV 2205.03250

[9] N. Kavokine, M.-L. Bocquet and L. Bocquet. Fluctuation-induced quantum friction in nanoscale water flows. Nature 602, 84-90 (2022). ArXiv 2105.03413


[8] P. Robin, N. Kavokine and L. Bocquet. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 373, 687 – 691 (2021). ArXiv 2105.07904

[7] N. Kavokine, R. R. Netz and L. Bocquet. Fluids at the Nanoscale: from continuum to sub-continuum transport. Annu. Rev. Fluid Mech. 53, 377 – 410 (2021). ArXiv 2011.14111


[6] S. Marbach, N. Kavokine and L. Bocquet, Resonant osmosis across active switchable membranes. J. Chem. Phys. 152, 054704 (2020). ArXiv 2002.02931

[5] N. Kavokine, S. Zou, R. Liu, A. Niguès, B. Zou and L. Bocquet. Ultrafast photomechanical transduction through thermophoretic implosion. Nat. Commun. 11, 50 (2020).


[4] N. Kavokine, S. Marbach, A. Siria and L. Bocquet. Ionic Coulomb blockade as a fractional Wien effect. Nat. Nanotech. 14, 573 – 578 (2019). ArXiv 2005.05199 


[3] J. Vialetto, M. Hayakawa, N. Kavokine, M. Anyfantakis, S. Rudiuk, M. Morel and D. Baigl. Magnetic actuation of discrete liquid entities with a deformable paramagnetic liquid substrate. Angew. Chem. Int. Ed. 56, 16565 – 16570 (2017)


[2] S. Lou, Y. Adam, E. Weinstein, E. Williams, K. Williams, V. Parot, N. Kavokine, S. Liberles, L. Madisen, H. Zeng, and A. Cohen. Genetically targeted all-optical electrophysiology with a transgenic Cre-dependent Optopatch mouse. J. Neurosci., 43, 11059 – 11073, (2016)

[1] N. Kavokine, S. Rudiuk, M. Morel, T. Bickel and D. Baigl. Light-Driven Transport of a Liquid Marbles with and against Surface Flows. Angew. Chem. Int. Ed. 55, 11183 – 11187 (2016)

In the press

05/2022: Online article. The Quantum Plumber. Mara Johnson-Groh, Flatiron Scientist Spotlight series,

03/2022: Online article. Seltsame Quantenreibung in Kohlenstoffnanoröhren. Lars Fischer,

03/2022: Newspaper article. Du quantique dans l’écoulement de l’eau. David Larousserie, Le Monde.

03/2022: Online article. ‘Quantum brakes’ slow water flow through carbon nanotubes. Isabelle Dumé, Physics World.

02/2022: Magazine article. Quantum friction explains water’s freaky flow. Karmela Padavic-Kallaghan, Scientific American.

02/2022: Magazine article. Quantum friction explains strange way water flows through nanotubes. Chen Ly, New Scientist.

02/2022: Newspaper article. Hoe nauwer het nanobuisje is, hoe sneller water erdoorheen stroomt. Dorine Schenck, NRC.

02/2022: Online article. New phenomenon ‘quantum friction’ explains water’s bizarre properties. Tim Wogan, Chemistry World.

02/2022: Podcast. Weirdly flowing water finally has an explanation: ‘quantum friction’. Nature.

02/2022:  Press release. “Quantum friction” slows water flow through carbon nanotubes, resolving long-standing fluid dynamics mystery. Highlighted on, SciTechDaily, ScienMag, Nanowerk and

09/2021: Magazine article. Nanofluidique : un neurone ionique artificiel, c’est possible ? Romain Fouchard, Science&Vie.

09/2021: Online article. These Super-Efficient, Artificial Neurons Do Not Use Electrons. Payal Dhar, IEEE Spectrum.

08/2021: Online article. IA: un neurone ionique artificiel ouvre un champ d’application considérable. Sébastien Gavois,

08/2021: Press release. Un neurone ionique artificial pour les mémoires électroniques de demain.